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a  b  s  t  r  a  c  t

The  two  main  goals  of  the  analytical  method  described  herein  were  to (1)  use  principal  component  analy-
sis  (PCA),  hierarchical  clustering  (HCA)  and  K-nearest  neighbors  (KNN)  to  determine  the feedstock  source
of  blends  of biodiesel  and  conventional  diesel  (feedstocks  were  two  sources  of  soy,  two  strains  of  jatropha,
and  a  local  feedstock)  and  (2)  use  a partial  least  squares  (PLS)  model  built  specifically  for  each  feedstock  to
determine  the  percent  composition  of  the  blend.  The  chemometric  models  were  built  using  training  sets
eywords:
hromatography
iodiesel
lend
hemometrics

composed  of  total  ion current  chromatograms  from  gas  chromatography–quadrupole  mass  spectrome-
try  (GC–qMS)  using  a polar  column.  The  models  were  used  to semi-automatically  determine  feedstock
and  blend  percent  composition  of independent  test  set  samples.  The  PLS  predictions  for  jatropha  blends
had  RMSEC  =  0.6,  RMSECV  =  1.2,  and  RMSEP  = 1.4.  The  PLS  predictions  for  soy  blends  had  RMSEC  =  0.5,
RMSECV  =  0.8,  and RMSEP  =  1.2.  The  average  relative  error  in  predicted  test  set  sample  compositions  was
5%  for  jatropha  blends  and  4%  for  soy  blends.
. Introduction

Biofuels are an important alternative to fossil fuels. Biodiesel, in
articular, is an important substitute to conventional diesel since
lends of biodiesel and conventional diesel can be burned in con-
entional diesel engines without modification [1]. As alternative
uel sources are developed, analytical methods that provide quality
ssurance information can be useful.

Biodiesels produced from different feedstocks are composed
f unique and characteristic fatty acid methyl esters (FAME)
2]. The biodiesel FAMEs have significantly different properties
han the hydrocarbons in conventional diesel, so it is difficult
o achieve full chromatographic resolution of all components of

 blend of biodiesel and conventional diesel. Without full chro-
atographic resolution, traditional methods of chromatographic

ata analysis such as the internal standard method involv-
ng integrated peak areas are not convenient. However, even

ithout ideal chromatographic resolution, we  can exploit the
eproducible gas chromatography–quadrupole mass spectrome-
ry (GC–qMS) chromatographic fingerprints of the samples by

sing the chemometric pattern recognition techniques principal
omponent analysis (PCA), hierarchical cluster analysis dendro-
rams (HCA), and K-nearest neighbors (KNN). We  will also use

∗ Corresponding author. Tel.: +1 206 281 2102; fax: +1 206 281 2882.
E-mail  address: piercek@spu.edu (K.M. Pierce).

039-9140/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.talanta.2012.03.050
© 2012 Elsevier B.V. All rights reserved.

the multivariate calibration techniques partial least squares analy-
sis (PLS) and n-way partial least squares analysis (NPLS) to model
the total ion current (GC-TIC) and GC–qMS fingerprints. PCA,
HCA, and KNN are well known unsupervised pattern recognition
techniques that are described in many excellent chemometric text-
books [3–5]. In short, these techniques cluster similar training set
chromatograms together in transformed variable space, thus test
set chromatograms are semi-automatically determined to be from
the same feedstock as the nearest training set cluster. PLS and NPLS
are well known multivariate calibration techniques that are also
described in chemometric textbooks [3–5]. PLS and NPLS training
set models are used to predict the percent composition of test set
samples. Biodiesels are commercially available as 5% and 20% by
volume of biodiesel blended in conventional diesel (also known as
B5 and B20) so we prepared training set and test set blends ranging
from 0% through 30%.

Variations  in retention time and injection volume can obscure
important chemical variations so our analytical method includes
procedures to reduce the chemically irrelevant sources of
variation [6]. The procedures include baseline correction, sum-
normalization, alignment, feature selection, and a temporary
scaling step prior to PCA, HCA, and KNN modeling. Prior to PLS and
NPLS modeling, preprocessing procedures were baseline correc-

tion, sum-normalization, and alignment.

We specifically chose to study biodiesel blends because the
ability to predict retail biodiesel blend percent composition is
important to regulatory agencies, fuel compliance officers, and
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istributors of transport fuel who may  be interested in mon-
toring authenticity, quality, contamination, adulteration, and
ccuracy of reported blend percent compositions. Instrumental
ethods for monitoring biodiesel blends have been reported using

ourier-transform infrared spectroscopy [7–9], near-infrared spec-
roscopy [10,11], mid-infrared spectroscopy [12], nuclear magnetic
esonance spectroscopy [11,13–16], radio carbon analysis [17],
lectrospray ionization mass spectrometry [18], liquid chromatog-
aphy [19,20], and GC × GC with flame ionization detection [2,21].
ther reports quantified biodiesel blends through GC-FID [22] and
C–MS [23,24]. An ambient mass spectrometry method has been

eported to identify plant sources of biodiesel [25]. A PCA method
as used to analyze data collected by an electronic nose, with some
egree of quantification achieved with an artificial neural network
26]. We  previously reported a GC × GC–MS method to determine
ercent composition of biodiesel and conventional diesel blends
sing NPLS, and the current work reported herein is an extension
f that project [27]. The previous project only had one feedstock
f biodiesels, but the project herein involves multiple biodiesel
eedstocks. The two main goals of the analytical method described
erein are to (1) use chemometric pattern recognition to determine
he feedstock source of biodiesel in a blend of biodiesel and con-
entional diesel (i.e. whether the biodiesel feedstock is from soy,
atropha, or a commercial feedstock), and (2) use a chemometric
alibration model built for the particular feedstock to determine
he percent composition of the biodiesel in the blend.

.  Materials and methods

.1.  Materials

Commercial biodiesel and commercial conventional diesels
ere obtained from pumps at commercial stations in the Seattle,

A area. The feedstock for the commercial biodiesel is unknown

o the authors, but according to the company’s website, it is sup-
osed to be a local feedstock such as canola, switchgrass, soy,
ustard, corn, or camelina. The fatty acid profile of the commercial

able 1
amples prepared for PCA training set (left) and PCA test set (right). Percent refers to perce
.1  for definition of abbreviations.

PCA training set

Biodiesel Conventional Percent 

Jat A Conv 1 20 

Jat  A Conv 2 20 

Jat  A Conv 3 20 

Jat  A Conv 4 20 

Jat  B Conv 1 20 

Jat  B Conv 2 20 

Jat  B Conv 3 20 

Jat  B Conv 4 20 

Com  Conv 1 20 

Com  Conv 2 20 

Com Conv 3 20 

Com  Conv 4 20 

Com  Conv 5 20 

Soy  A Conv 1 20 

Soy  A Conv 2 20 

Soy  A Conv 3 20
Soy  A Conv 4 20 

Soy  B Conv 1 20 

Soy  B Conv 2 20 

Soy  B Conv 3 20 

Soy  B Conv 4 20
– Conv 1 0
– Conv 2 0
– Conv 3 0
– Conv 4 0
– Conv 5 0
94 (2012) 320– 327 321

biodiesel  does not match reports of soy and jatropha fatty acid pro-
files [28,29] so herein we assume the commercial biodiesel is not
soy nor jatropha; additionally, later in this text (Fig. 3) it is shown
that unsupervised pattern recognition clusters the commercial
feedstock separate from the soy and jatropha clusters, supporting
our assumption that our samples are composed of three different
biodiesel feedstocks even though one feedstock is unknown. The
pure jatropha and soy biodiesels were provided by a major energy
company. The provided samples were from two strains of jatropha
and two  different sources of soy. The ten samples are designated Jat-
ropha A (Jat A), Jatropha B (Jat B), Soy A, Soy B, Commercial Retailer
(Com), Crown Hill retailer conventional diesel (Conv 1), Nickerson
retailer conventional diesel (Conv 2), Shoreline retailer conven-
tional diesel (Conv 3), West Seattle retailer conventional diesel
(Conv 4), and Interbay retailer conventional diesel (Conv 5). The
abbreviations shown in parentheses are used in Tables 1–4. Sam-
ples were prepared neat via mixing to create blends of biodiesel
and conventional diesel wherein biodiesel concentrations were
0%; 1%; 5%; 10%; 15%; 20%; 25% and 30% (v/v); yielding 66 dif-
ferent mixtures. Tables 1–3 describe which of these 66 samples
were used in the training sets and which were used in the test
sets.

2.2. Chromatographic method

The  chromatograms were obtained by an Agilent Technologies
6890 Network GC System with a 5973 Mass Selective Detector
and 7683 Series autoinjector. Samples were separated on a non-
polar column and on a polar wax column. The polar column was
an Agilent 19091N-113 HP-INNOWax (polyethylene glycol) with
dimensions 30 m × 320 �m × 0.25 �m.  For the polar column sep-
arations, the injector was held at 250 ◦C, samples were injected
neat with a 120:1 split ratio, and the He flow was constantly

1 mL/min. The oven was heated from 60 ◦C at 2 ◦C/min to 228 ◦C.
The transfer line heater was held at 230 ◦C. The detector scanned
ions of m/z 50–300 at 5.46 spectra/s with 150 ion count thresh-
old and no solvent delay. The nonpolar column was  an Agilent

nt by volume of biodiesel in blends of biodiesel and conventional diesel. See Section

PCA test set

Biodiesel Conventional Percent

Soy A Conv 1 10
Jat A Conv 2 10
Jat B Conv 3 10
Com Conv 4 10
Soy B Conv 5 10
Soy A Conv 5 15
Jat A Conv 5 15
Jat B Conv 5 15
Com Conv 5 15
Soy B Conv 5 15
Soy A Conv 5 25
Jat A Conv 5 25
Jat B Conv 5 25
Com Conv 5 25
Soy B Conv 5 25
Soy A Conv 1 30
Jat A Conv 2 30
Jat B Conv 3 30
Com Conv 4 30
Soy B Conv 5 30
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Table  2
Blends prepared for the jatropha PLS training set and the soy PLS training set. Percent refers to percent by volume of biodiesel in blends of biodiesel and conventional diesel.
See  Section 2.1 for definition of abbreviations.

Jatropha PLS training set Soy PLS training set

Biodiesel Conventional Percent Biodiesel Conventional Percent

Jat A Conv 5 1 Soy A Conv 5 1
Jat  A Conv 5 5 Soy A Conv 5 5
Jat  A Conv 5 10 Soy A Conv 5 10
Jat  A Conv 5 20 Soy A Conv 5 20
Jat  A Conv 5 30 Soy A Conv 5 30
Jat  B Conv 5 1 Soy B Conv 2 1
Jat  B Conv 5 5 Soy B Conv 2 5
Jat  B Conv 5 10 

Jat  B Conv 5 20
Jat  B Conv 5 30

Table 3
Blends prepared for jatropha PLS test set and soy PLS test set, and the blend per-
cent composition predicted by PLS. Percent refers to percent by volume of biodiesel
in  blends of biodiesel and conventional diesel. See Section 2.1 for definition of
abbreviations.

Biodiesel Conventional Percent PLS prediction

Soy A Conv 1 10 9.9
Soy B Conv 5 10 10.1
Soy A Conv 5 15 16.7
Soy B Conv 5 15 15.5
Soy A Conv  5 25 24.4
Soy B Conv 5 25 22.9
Soy A Conv 1 30 31.3
Soy B Conv 5 30 28.7
Jat A Conv 2 10 10.4
Jat B Conv 3 10 10.8
Jat A Conv 5 15 15.3
Jat B Conv 5 15  15.5
Jat A Conv 5 25 25.4
Jat B Conv 5 25 25.1
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Jat A Conv 2 30 31.5
Jat B Conv 3 30 33.5

9091S-433 HP-5MS (5% phenyl methyl siloxane) with dimensions
0 m × 250 �m × 0.25 �m.  For the nonpolar column separations,
he injector was held at 250 ◦C, samples were injected neat with

 120:1 split ratio, and the He flow was constantly 0.8 mL/min. The
ven was heated from 60 ◦C at 3 ◦C/min to 288 ◦C. The transfer line
eater was held at 300 ◦C. The detector scanned ions of m/z 50–300
t 5.46 spectra/s with 150 ion count threshold and 4.4 min  solvent
elay.

In general, the nonpolar column was able to resolve conven-
ional diesel peaks, and the polar column that was able to resolve
iodiesel peaks (FAME peaks). Fig. 1 shows the chromatograms of a
ample of 20% soy biodiesel blended in Interbay diesel. For both
olumns, the conventional diesel components elute earlier than

he FAMEs. In Fig. 1A, the conventional diesel peaks are relatively
ell resolved by the nonpolar column, while the FAME peaks at
48 min  are unresolved (the peak at 44 min  is the earliest eluting
AME). Conversely, in Fig. 1B, the polar column does not resolve the

able 4
east  squares linear fit of plot of predicted percent composition (ordinate) versus accepted
,  predicted percent composition values.

n m SDm y-int 

Jatropha PLS test set 8 1.07 0.05 −0.55 

Soy  PLS test set 8 0.95 0.06 0.88 

Jatropha  PLS training set cross validation 10 0.97 0.04 0.29 

Soy  PLS training set cross validation 10 0.99 0.03 0.00 

Jatropha  NPLS test set 8 1.05 0.07 0.40 

Soy  NPLS test set 8 0.94 0.06 1.55 

Jatropha NPLS training set cross validation 10 0.97 0.04 0.26 

Soy  NPLS training set cross validation 10 0.99 0.03 0.15 
Soy B Conv 2 15
Soy B Conv 2 20
Soy B Conv 2 30

conventional diesel peaks, while the FAME peaks at ∼47–67 min  are
relatively well resolved. The ChemStation software with the NIST05
mass spectral matching library was  used to identify the FAME peaks
labeled in Fig. 1. The reported identifications agreed among three
chromatograms and had quality match factors equal to or greater
than 95 out of 100.

2.3.  Data analysis method

The  chromatograms were exported as .txt files including all
scans and all m/z using Enhanced ChemStation E.02.00.493. The .txt
files were imported into MATLAB 7.9.0 (Mathworks, Natick, MA)
for analysis. The pixel level GC–qMS chromatograms were prepro-
cessed by baseline correction, sum-normalization, and piecewise
alignment using window size = 300 points, estimated peak size = 50
points and maximum shift = 100 points, target = ninth training set
sample (arbitrarily chosen) [30]. The baseline corrected, normal-
ized, and aligned GC–qMS chromatograms were then summed
along the m/z dimension to yield GC-TIC chromatograms. The GC-
TIC chromatograms were combined into a single 2D matrix, and this
matrix was submitted to PCA, HCA, KNN, and PLS using PLS Toolbox
6.2.1 software (Eigenvector Research, Manson, WA). The baseline
corrected, normalized, and aligned GC–qMS chromatograms were
also combined into a three-way array, and this array was  submitted
to NPLS using PLS Toolbox 6.2.1. The three-way array of GC–qMS
chromatograms was unfolded along the m/z dimension for sub-
mission to PCA. PC 1 and PC 2 were used for PCA modeling. Three
latent variables were used for PLS and NPLS modeling. Datasets
were mean centered prior to PCA, PLS, and NPLS. The f-ratio thresh-
old was determined by maximizing the percent variance captured
by PCA models built for reduced training sets as a function of a wide
range of f-ratio threshold values. For example, the polar column GC-
TIC training set, was  reduced by retaining only features with f-ratio
values above 130. This threshold corresponded to a PCA model that

captured a high percentage of variation (98%) and it corresponded
to a point where further increasing the threshold and reducing the
data set caused little increase in the percent variance captured by
PCA.

 percent composition (abscissa). m, slope; SD, standard deviation; y-int, y-intercept,

SDy-int r2 SDy Average relative error (%)

0.98 0.99 1.0 5 RMSEP = 1.4
1.20 0.98 1.3 4 RMSEP = 1.2
0.66 0.99 1.3 13 RMSECV = 1.2
0.44 0.99 0.9 22 RMSECV = 0.8
1.50 0.98 1.5 8 RMSEP = 0.8
1.20 0.98 1.3 7 RMSEP =1.5
0.71 0.99 1.4 28 RMSECV = 1.3
0.45 0.99 0.9 22 RMSECV = 0.8
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Fig. 1. GC-TIC chromatograms of a 20% blend of soy biodiesel and conv

. Results and discussion

.1.  Preprocessing

The training set chromatograms listed in Table 1 were blends
f conventional diesel with jatropha, soy, commercial, or zero
iodiesel. We  will first completely describe the treatment of the GC-
IC chromatograms before showing results for the same treatment
pplied to the GC–qMS chromatograms.

The  baseline corrected, normalized, and aligned polar column
C-TIC training set chromatograms from Table 1 were submitted to

 previously described supervised feature selection method which
s based on the f-ratio (the ratio of between class variance divided by

ithin class variance for each retention time pixel across all chro-
atograms in the dataset) [6,31]. Fig. 2 is a plot of the calculated

-ratios. The retention times with largest f-ratios are the FAMEs.
he training set was reduced to retain only retention time pixels
ith f-ratios greater than 130 (the horizontal line in Fig. 2 shows

he f-ratio = 130 threshold). These selected retention times were
ecorded so they could later be used to reduce the unsupervised
est set down to the exact same subset of features.

Notice that the training set in Table 1 was composed only of 20%
nd 0% blends. If a variety of percent compositions are included

n each class, the concentration variations will obscure the feed-
tock variations during PCA. Samples will not always be 20% or 0%,
nd, indeed, the test set listed in Table 1 is composed of blends

2000

2500

1000

1500

F
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0

500

Retention  Time  (minute s)( )

ig. 2. The f-ratio for each data point in the PCA training set (polar column chro-
atograms)  was calculated using given biodiesel class information (jatropha, soy,

ommercial, or none). The horizontal line marks f-ratio = 130. Data set reduction was
chieved by retaining only data points with f-ratio greater than a certain threshold
or  further processing (in this case, threshold = 130).
nal diesel separated by (A) a nonpolar column and (B) a polar column.

that range from 10% to 30%. So right after feature selection, the
reduced training set of polar column GC-TIC chromatograms was
temporarily scaled to remove any percent composition variations.
The scaling method was  to simply divide all the data points in
each reduced chromatogram by its signal at 47 min. For samples
that did have biodiesel present, 47 min  was the retention time
of the earliest eluting FAME. This scaling was applied to every
chromatogram, whether or not biodiesel was  present. The scal-
ing preserved the relative FAME ratios within each chromatogram,
while it removed percent composition information from each chro-
matogram. This scaling preserved the FAME ratios within each
feedstock and removed percent composition variations between
the 0% and 30% blends. This scaling was implemented to help PCA
capture the relative FAME content characteristic of each feedstock.
The nonpolar column GC-TIC chromatograms also underwent the
same procedures of baseline correction, sum-normalization, align-
ment, feature selection, and scaling by the signal at 44 min  (the
retention time of the earliest eluting FAME, shown in Fig. 1A).

3.2.  Determine feedstock using pattern recognition techniques

3.2.1.  Build pattern recognition model using training set
The  reduced and scaled polar column GC-TIC training set chro-

matograms listed in Table 1 were then submitted to PCA and
modeled with PC 1 and PC 2, capturing 97.97% of the total vari-
ance in the data set. The scores on PC 1 and PC 2 are plotted in
Fig. 3A for the polar column chromatograms. The scores for the
nonpolar column GC-TIC chromatograms are plotted in Fig. 3B. The
polar column chromatograms produced a scores plot with the tight-
est clusters, and upon manual inspection, PCA correctly clustered
the biodiesel feedstocks of the polar training set chromatograms.
Fig. 3C shows scores from a PCA model built without feature selec-
tion and without scaling for the polar column training set. Fig. 3D
shows scores from a PCA model built without feature selection and
without scaling for the nonpolar column training set. According to
manual inspection, the clustering in Fig. 3A is better than the clus-
tering in Fig. 3B–D. Thus, it was decided the feature selection and
scaling procedures were helpful, and it was  decided that the non-
polar column did not provide sufficient resolution between FAMEs
to allow PCA to model the characteristic FAME profiles necessary to

correctly cluster biodiesel feedstocks. Therefore, the nonpolar col-
umn  chromatograms were not analyzed beyond this point and no
further discussion of the nonpolar column chromatograms will be
included herein.
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.2.2. Apply pattern recognition model to independent test set
Finally,  the independent test set of polar column GC-TIC

hromatograms listed in Table 1 was baseline corrected, sum-
ormalized, and aligned to the same target used for the training
et. Then the exact same features that were previously selected in
he training set were selected in the test set. This reduced test set
nderwent the scaling procedure (divide each chromatogram by

ts signal at 47 min) and was submitted to PCA. The test set scores
re overlaid directly on the training set scores in Fig. 4. Accord-
ng to manual inspection, all the test set samples appear closest

o the correct training set cluster, but some deviations are visible.
he three test set samples that visibly deviated the most from the
orrect cluster were the 11th, 14th, and 15th test set polar column
C-TIC chromatograms listed in Table 1. Therefore, if we assume
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ig. 4. Plot of test set PCA scores overlaid on training set PCA scores for the polar
olumn  GC-TIC chromatograms. The 95% confidence interval is shown.
ent. Conv = pure conventional diesel, Com = commercial biodiesel mixed with Conv,
atropha biodiesel A mixed with Conv, Jat B = jatropha biodiesel B mixed with Conv.

that a test set chromatogram is from the same feedstock as the
nearest training set cluster, then we  have achieved the first goal
of our analytical method, which was  to determine the feedstock
of truly unknown blends of biodiesel and conventional diesel. The
limitations of this assumption are that this only works for the feed-
stocks we  include in the training set to build the PCA model. We
were limited in having access to only three pure feedstocks (two
strains of jatropha, two  sources of soy, and a retail feedstock) but
if more pure feedstocks could be acquired, the method described
heretofore could be extended to accommodate a wider variety of
feedstocks.

The procedures and PCA method described heretofore correctly
clustered at least 16 of the 20 test set polar column GC-TIC chro-
matograms. A scores plot is an excellent qualitative tool, and
clusters of scores can be easily defined by the human eye, but HCA
can also be used to describe clustering in a dataset. The polar col-
umn GC-TIC training set and test set scores from PCA (shown in
Fig. 4) were exported out of PCA and then submitted to unsuper-
vised Ward’s method HCA to build a dendrogram of the distances
in PC-space among the test set and training set samples [27]. The
dendrogram in Fig. 5 clearly differentiates four clusters based upon
the distance between their centers. The dendrogram properly asso-
ciates each sample of the test set with its corresponding training
set cluster. Upon visual inspection, even the samples in Fig. 4 scores
plot that appeared to have strayed from their correct cluster are
properly classified by the dendrogram.

Since the HCA dendrogram still relies on manual interpretation
to identify groups, the unsupervised KNN method was  also used

to build a KNN model of the PC 1 and PC 2 scores of the polar
column GC-TIC training set data listed in Table 1. When the polar
column GC-TIC test set scores were submitted to that KNN model,
it correctly predicted the biodiesel feedstock of all 20 of the test
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ig. 5. HCA dendrogram built using the PCA scores shown in Fig. 4. Training set sam
5%,  and 30% blends.

et samples, with complete agreement between each of the three
earest neighbors. So submitting the reduced test set to the PCA
odel built using the training set, then submitting the PCA scores

o KNN was an accurate method of objectively classifying the test
et samples.

A  KNN model was also built using the reduced training set chro-
atograms at the chromatographic data point level, rather than

sing the PCA scores. When the reduced test set chromatograms
ere submitted to that KNN model, the biodiesel feedstock of all

0 test set samples was  correctly predicted with 100% agreement
etween each of the three nearest neighbors.

A major limitation of using these PCA models to predict feed-
tock of biodiesel blends is that these particular models will not be
seful for feedstocks that are not included in the model. For exam-
le, if a biodiesel blend made from animal fat was  part of the test
et and if it was submitted to the PCA models in Fig. 3 or Fig. 4, the
nimal biodiesel’s score would probably appear outside the four
lusters and the analyst would have to classify it as “other”. Like-
ise, PCA scores for mixtures of feedstocks would not appear to fit
nto the four clusters seen in Fig. 3 or Fig. 4. So the PCA model is able
o predict feedstocks only of types that were used to construct the

odel; in our case, we were only able to acquire five pure biodiesel
eedstock samples, four of which were generously provided by the
re the 20% blends and pure conventional diesels. Test set samples are the 10%, 15%,

oil refinery. This is a major limitation of the PCA method described
herein, but it is conceivable that analysts with access to more pure
feedstocks could extend the PCA method described herein to model
more types of feedstocks, and perhaps even feedstock mixtures.

3.3.  Determine blend percent composition using multivariate
calibration techniques

3.3.1.  Build partial least squares model using training set
The  PCA, dendrogram, and KNN models successfully predicted

the feedstock of independent test set biodiesel blends using GC-TIC,
thus fulfilling the first goal of the project. The second goal was to
predict the percent composition of independent test set biodiesel
blends using a PLS model built specifically for the feedstock of each
test set sample.

Two  training sets were built that were composed of polar col-
umn GC-TIC chromatograms for 1–30% (v/v) soy or jatropha blends,
which are listed in Table 2. The chromatograms were baseline
corrected, sum-normalized, and aligned (they were not reduced
by feature selection, nor scaled to the first eluting FAME signal).

Separate PLS models were built for the jatropha training set and
the soy training set. The PLS predictions for jatropha blends had
RMSEC = 0.6 and RMSECV = 1.2. The PLS predictions for soy blends
had RMSEC = 0.5 and RMSECV = 0.8.
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.3.2. Apply partial least squares model to independent test set
Table  3 lists the two independent test sets that were composed

f polar column GC-TIC chromatograms for soy or jatropha blends.
he test sets were baseline corrected, sum-normalized, and aligned
o the same alignment target used for the training set. The prepro-
essed jatropha test set was submitted to the jatropha PLS model,
nd the preprocessed soy test set was submitted to the soy PLS
odel. Table 3 shows the predicted blend percent composition val-

es for the jatropha and soy test sets. The PLS predictions for the
est set of jatropha blends had RMSEP (root mean squared error of
rediction) = 1.4. The PLS predictions for the test set of soy blends
ad RMSEP = 1.2.

The predicted values were plotted versus accepted values and
east squares linear fits were calculated. Ideal PLS models will pro-
uce plots of predicted values versus accepted values with least
quares linear fits that have slope = 1, y-intercept = 0, r2 = 1, and
verage relative error = 0%. Average relative errors are also reported
or each test set, where average relative error is defined as the aver-
ge of the absolute value of the predicted value minus the accepted
alue divided by the accepted value. The linear fit of the jatropha
LS test set results was y = 1.07x − 0.55, r2 = 0.99, standard deviation
f predicted composition = 1.0, average relative error = 5%, slope
tandard deviation = 0.05, intercept standard deviation = 0.98, for

 = 8. The linear fit of the soy PLS test set results was  y = 0.95x + 0.88,
2 = 0.98, standard deviation of predicted composition = 1.3, average
elative error = 4%, slope standard deviation = 0.06, intercept stan-
ard deviation = 1.20, for n = 8. These results are listed in Table 4.
he PLS models were also evaluated using leave-one-out cross
alidation, and the results are also listed in Table 4. Some of the
verage relative errors were quite high, especially for the cross-
alidation results. This is partly due to small magnitude errors
n the 1% blends having a much greater influence on the calcu-
ated average relative error than similar magnitude errors in the

ore concentrated blends. In addition, prediction performance
egrades when these models are expected to extrapolate beyond
he range of variations modeled in the training set, so if sam-
les quite different from the training set are regressed onto the
CA and PLS models, accurate PCA and PLS results may  not be
xpected.

.4. Compare GC-TIC and GC–qMS pattern recognition results

A  goal of this project was to compare the GC-TIC PCA results
o GC–qMS PCA results for the polar column chromatograms. A
CA model was built for the polar column GC–qMS training set
ata listed in Table 1 after baseline correction, sum-normalization,
lignment, feature selection with optimized f-ratio threshold = 500,
nd scaling to the maximum m/z signal at 47 min. The PCA results
re shown in Fig. 6 and they were similar to the results provided
y the GC-TIC data that were shown in Fig. 4. A dendrogram built
sing the PCA scores from the GC–qMS data was similar to Fig. 5
not shown). The KNN model correctly predicted the biodiesel
ource of all 20 of the test set samples, with complete agreement
etween the three nearest neighbors. Therefore it was decided
hat the pattern recognition methods could accurately classify the
ndependent test set polar column GC–qMS chromatograms. Next,
eparate NPLS models were built for the polar column GC–qMS jat-
opha and soy training sets listed in Table 2. The test sets listed
n Table 3 were submitted to the corresponding jatropha or soy
PLS model. The predicted values were plotted versus accepted
alues and least squares linear fits were calculated. The results are
isted in Table 4 along with the cross validation results. The NPLS

redictions for jatropha blends had RMSEC = 0.8, RMSECV = 1.3, and
MSEP = 0.8. The NPLS predictions for soy blends had RMSEC = 0.5,
MSECV = 0.8, and RMSEP = 1.5. The average relative error in pre-
icted test set sample compositions was 8% for jatropha blends and
Fig. 6. Plot of test set PCA scores overlaid on training set PCA scores for the polar
column  GC–qMS chromatograms. The 95% confidence interval is shown.

7% for soy blends. Most of these error analysis values are slightly
higher than the corresponding PLS values. The predicted blend
percent composition values provided by PLS and GC-TIC data are
slightly more accurate than the values predicted using NPLS and
GC–qMS data.

Using  the polar column instrumental method, the GC–qMS chro-
matograms yielded no additional information compared to the
GC-TIC chromatograms. Perhaps summing the qMS  dimension to
yield the TIC chromatograms reduced some of the random indeter-
minate noise. Perhaps the greater chemical selectivity one might
expect to be provided by the qMS  dimension compared to the TIC
dimension was  obscured by the indeterminate noise. Perhaps there
actually is no reason to expect GC–qMS to provide more chemical
selectivity information than GC-TIC chromatograms for this system.

4. Conclusions

Blends of biodiesel and conventional diesel were prepared from
five conventional diesels, two  different strains of jatropha, two dif-
ferent soy sources, and a biodiesel from a third feedstock that was
acquired from a retailer’s pump. The variety of conventional diesels
and biodiesels were acquired in order to construct challenging data
sets containing variations expected of truly unknown samples that
could be collected for sample authentication purposes. For test
set blends of biodiesel and conventional diesel, the biodiesel feed-
stock was determined using PCA, HCA, and KNN combined with the
preprocessing procedures baseline correction, sum-normalization,
alignment, feature selection, and scaling to the earliest eluting
FAME signal. Then the blend percent compositions of the test set
samples were determined using a PLS model built specifically for
the test set sample’s feedstock. PLS required the chromatograms to
be baseline corrected, sum-normalized, and aligned.

The polar chromatography column method provided better PCA
classification results than the nonpolar column method, so we only
built PLS models for the polar column data in this work. How-
ever, it is worth noting that the nonpolar column method was
more thoroughly studied for a PLS application in our previous work
[27]. Our previous work involved using PLS to quantify only one
feedstock (the commercial feedstock) of biodiesel samples using
GC–qMS with a nonpolar column, and GC × GC-TOFMS with a non-
polar primary column and polar secondary column [27]. In that
previous work, the nonpolar column alone did not provide an accu-
rate PLS model from GC–qMS data, but the GC × GC-TOFMS method
did provide an accurate model precisely because of the resolution
achieved among the FAMEs due to the polar secondary column.

This is why we purchased a long polar column and developed the
GC–qMS method described herein to build accurate PLS models
using GC–qMS data.
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